Local polynomial regression on unknown manifolds
نویسندگان
چکیده
We reveal the phenomenon that ”naive” multivariate local polynomial regression can adapt to local smooth lower dimensional structure in the sense that it achieves the optimal convergence rate for nonparametric estimation of regression functions belonging to a Sobolev space when the predictor variables live on or close to a lower dimensional manifold.
منابع مشابه
Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution∗
Masry (1996b) provides estimation bias and variance expression for a general local polynomial kernel estimator in a general multivariate regression framework. Under smoother conditions on the unknown regression and by including more refined approximation terms than that in Masry (1996b), we extend the result of Masry (1996b) to obtain explicit leading bias terms for the whole vector of the loca...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملPolynomial Regression on Riemannian Manifolds
In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of t...
متن کاملEstimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unkno...
متن کاملLocal Polynomial Estimation of Heteroscedasticity in a Multivariate Linear Regression Model and Its Applications in Economics
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improvin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006